Cambio climático: ¿De qué forma la IA puede ayudarnos a frenar esta crisis global?

Según un estudio publicado por la revista académica Nature, los seres humanos son responsables de entre un 25% y un 40% más de la producción total de emisiones de metano de lo que se había estimado anteriormente. El metano es uno de los gases de efecto invernadero más potentes, siendo aproximadamente 28 veces más eficaz que el dióxido de carbono para atrapar el calor en la atmósfera, contribuyendo así al cambio climático. 

Por esta razón, este gas es actualmente el responsable de aproximadamente una cuarta parte del calentamiento global. Si bien es generado naturalmente por animales, volcanes y humedales, también es un subproducto de la producción de petróleo y gas. En la industria minera, esta es una problemática que también se encuentra muy presente, debido al impacto negativo de los combustibles fósiles que se utilizan.

Uso de combustible fósil: en camino a una mayor eficiencia 

En virtud del Acuerdo de París de 2015, 195 países se comprometieron a limitar el aumento de la temperatura global a 2.0 °C, e idealmente no más de 1.5 °C. Este objetivo ha motivado, en parte, la descarbonización de múltiples industrias. Este aparente cambio de mentalidad sin duda aumentará prontamente la presión de los gobiernos, los inversores y la sociedad para reducir las emisiones del sector minero.

Actualmente, esta industria es responsable del 4 al 7% de las emisiones de gases de efecto invernadero a nivel mundial. Las emisiones de CO2 generadas por las operaciones mineras y por el consumo de energía, respectivamente, ascienden al 1%. Por su parte, las emisiones fugitivas de metano de la minería del carbón se estiman entre el 3 y el 6%.

El impacto negativo de estas emisiones ha sido largamente documentado, tanto en el extranjero como en nuestro país. Durante principios de 2020, un estudio reveló que el alza en la temperatura del planeta fue parcialmente responsable por los devastadores incendios registrados en Australia. En Chile, la diversidad climática presente a lo largo del territorio se ha visto afectada en distintos aspectos, especialmente en la caída de lluvias, factor que impacta negativamente a rubros tan importantes como la agricultura.

COSMOS

UNIT, empresa dedicada al desarrollo de soluciones a través de la inteligencia artificial, recoge esta problemática a través de COSMOS. El proyecto busca optimizar el uso de combustibles de las industrias en el transporte, especialmente en el rubro minero.

La plataforma permite reducir el consumo de combustible, junto con las emisiones GHG a través de predicciones realizadas en base a modelos de inteligencia artificial. Éstos predicen el consumo, optimizan el rendimiento y detectan anomalías en el uso de combustible para asegurar un mejor uso de este recurso. La detección temprana permite, además, retroalimentar a los operadores sobre prácticas operacionales incorrectas. De esta manera,  buscando la excelencia y eficiencia operacional.

 

 

AvatarCarla Espinoza Gutiérrez

Journalist and Community Manager. I am passionate about delivering the right message for different kinds of audiences, always evolving and refreshing the tools, shape and tone of delivery.


Reconocimiento facial: una tecnología en constante actualización

El reconocimiento facial se refiere a la tecnología capaz de identificar la identidad de sujetos en imágenes o vídeos. Pese a una cantidad no menor de desconfianza debido a sus posibilidades de falla, actualmente es una metodología en constante desarrollo. Se trata de un sistema biométrico no invasivo, en donde las técnicas utilizadas han variado enormemente durante los años.

Durante los 90’s, los métodos tradicionales utilizaban características handcrafted, como descriptores de bordes y texturas. Gabor, Local Binary Patterns (LBP), Histogram of Oriented Gradients (HOG), Scale Invariant Feature Transform (SIFT), etc. son algunos ejemplos de esto, los que eran la base para representaciones más complejas, por medio de codificación y transformación de características como Principal Component Analysis (PCA), LCA, entre otras. Aspectos como la luminosidad, pose o expresión pueden manejarse a través de estos parámetros.

Antiguamente, no existía ninguna técnica que pudiera dominar completa e integralmente todos los escenarios. Uno de los mejores resultados logrados es el presentado en el estudio  “Blessing of dimensionality: High-dimensional feature and its efficient compression for face verification”, donde se alcanza un 95% en la base de datos Labeled Face in the Wild (LFW). Esto indica que los métodos existentes eran insuficientes para extraer una representación de los rostros que fuese invariante a los cambios del mundo real.

¿Cómo funciona el reconocimiento facial en la actualidad?

Desde hace unos años, los métodos tradicionales han sido reemplazados por otros basados en deep learning, los que a su vez tienen su origen en las Redes Neuronales Convolucionales (CNN). La principal ventaja de los métodos basados en aprendizaje profundo, es que pueden “aprender”, a partir de grandes bases de datos, las mejores características para representar los datos, es decir, para construir los rostros. 

Un ejemplo de esto es la red DeepFace, que el año 2014 alcanzó un desempeño “estado del arte” en la famosa base de datos LFW. Con esto, logró aproximarse al desempeño de un humano en un escenario sin restricciones (DeepFace: 97,35% vs Humanos: 97,53%). Esto, entrenando un modelo de 9 capas sobre 4 millones de imágenes de rostros. Inspirado por este trabajo, el foco de las investigaciones se desvió hacia los métodos basados en aprendizaje profundo, logrando alcanzar un 99,8% en tan solo tres años.

Los sistemas de reconocimiento facial usualmente están conformados por las etapas mostradas en la siguiente figura:

Sistemas de reconocimiento de rostros. (a) Detección de rostro. (b) Alineamiento del rostro. (c) Representación del rostro. (d) Pareo de rostros.
  1. Detección de rostros: Se ingresa al sistema una imagen de consulta. Un detector encuentra la posición del rostro en la imagen de consulta y retorna las coordenadas de la posición.
  2. Alineamiento del rostro: Su objetivo es escalar y recortar la imagen del mismo modo para todos los rostros, utilizando un set de puntos de referencia.
  3. Representación del rostro: Los píxeles de la imagen de la imagen del rostro son transformados a una representación compacta y discriminativa, es decir, en un vector de características. Esta representación puede ser lograda utilizando métodos clásicos o modelos basados en aprendizaje profundo. Idealmente, todas las imágenes del rostros de un mismo sujeto deberían tener vectores de características similares.
  4. Pareo de rostros: Las imágenes de los rostros de los individuos registrados conforman una base de datos llamada galería. Cada imagen de rostro en la galería es representada como un vector de características. La mayoría de los métodos calculan la similitud entre el vector de características de la imagen de consulta y los vectores de la galería, utilizando la distancia coseno o la distancia L2. Aquel con menor distancia indica a qué individuo pertenece el rostro consultado.

 

 

Cristóbal QuezadaCristóbal Quezada

I am a Data Scientist interested in natural language processing.


Inteligencia artificial: ¿Cómo puede ayudarte a conseguir un ascenso?

Todos y todas hemos soñado alguna vez con ser nuestros propios jefes, tarea para la cual invertimos recursos e incontables horas de estudio. Si bien esta es, sin duda, la base del crecimiento profesional, hoy en día existen múltiples herramientas capaces de traspasar distintos campos de expertise para ayudarnos a potenciar nuestros objetivos y permitirnos tomar la delantera en el mundo laboral.

Actualmente, cada estudiante, docente y profesional de las ciencias de datos tiene una opinión formada sobre la inteligencia artificial (IA), sus usos, aplicaciones y limitaciones. Se trata de una disciplina en constante expansión, cuyo alcance se vuelve cada vez más transversal. Incluso aquellos en otras ramas académicas y profesiones están comenzando a tener más que un mero interés pasajero en estas tecnologías emergentes.

Según MIT Sloan Research, más del 90% de las mayores empresas a nivel global están utilizando IA para mejorar sus protocolos de interacción con clientes. En otras palabras, estamos entrando en una nueva década, una que definitivamente será definida por los datos. Como consecuencia, la demanda de profesionales dedicados a disciplinas será mucho más intensa.

Nuevas oportunidades para el crecimiento profesional

La consultora de gestión McKinsey & Company, basada en E.E.U.U, estima que el 13% de las actividades laborales actuales realizadas en ocupaciones que requieren una universidad o títulos avanzados podrían ser desplazadas. En concreto, el estudio arrojó que de 60 a 375 millones de personas en todo el mundo podrían verse enfrentadas a la necesidad de cambiar de rubro para 2030. 

Contrario a la opinión popular, donde estas herramientas suelen ser las causantes de la pérdida de empleos, la nueva era liderada por los datos ofrece múltiples y nuevas oportunidades. En este cambio de panorama, tecnologías como la IA y Machine Learning (ML) liderarán la demanda de profesionales para esta fecha. Pero, ¿por dónde empezar?

A quién seguir

Mantente al día de las novedades del mundo de la inteligencia artificial siguiendo en redes sociales a algunas de las voces más respetadas del mundo AI.

Bob Swan, Intel Corporation

Jen-Hsun “Jensen” Huang, Nvidia

Demis Hassabis, DeepMind Technologies

Jeff Bezos, Amazon

Juan Larenas, UNIT

Recursos gratuitos

Existen muchas herramientas de acceso liberado que pueden ayudarte a forjar tu nueva carrera en AI. Aquí te recomendamos algunas.

Elements of AI

The Elements of AI es una serie de cursos gratuitos en línea creados por Reaktor y la Universidad de Helsinki. Combinan teoría con ejercicios prácticos para que puedas aprender a tu propio ritmo.

Curso de Inteligencia Artificial del MIT

La propuesta, disponible a través del canal oficial de YouTube del Instituto Tecnológico de Massachusetts, está dirigida a profesionales con conocimientos básicos sobre IA.

Curso intensivo de Aprendizaje Automático de Google

Si bien no requiere ningún conocimiento previo, te recomendamos tener experiencia en la programación de Python. Sin embargo, el curso contiene recursos secundarios para ayudarte a seguir aprendiendo.

Curso de Aprendizaje Automático de Stanford

La popular plataforma de cursos en línea Coursera ofrece este curso dictado por la Universidad de Stanford. Está enfocado en adquirir conocimientos prácticos sobre aspectos clave de la AI.

¿Te gustaría conocer tu nivel de AI y Machine Learning? Pon a prueba tus habilidades con esta prueba gratuita de PixelTests.

 

 

AvatarCarla Espinoza Gutiérrez

Journalist and Community Manager. I am passionate about delivering the right message for different kinds of audiences, always evolving and refreshing the tools, shape and tone of delivery.


Inteligencia Artificial: ¿Por qué fallan los sistemas de reconocimiento facial?

Contrario a los sistemas protegidos con contraseña, nuestra información biométrica está ampliamente disponible y es relativamente fácil de obtener. Por lo anterior, existen algunos tipos de ataques fáciles de implementar y que pueden tener éxito si no existen medidas para evitarlos. En particular, los sistemas de reconocimiento facial se pueden vulnerar utilizando uno de los siguientes métodos: 

  • Una fotografía
  • Un vídeo
  • Un modelo 3D del rostro

Se han desarrollado varios métodos para enfrentar el problema de la suplantación con imágenes de rostros en sistemas de reconocimiento facial. Estos pueden ser divididos en dos enfoques: características dinámicas y  características estáticas.

Los enfoques de características dinámicas buscan detectar el movimiento en una secuencia de vídeo, analizando la trayectoria de segmentos específicos del rostro. Éstas revelan información valiosa para discriminar entre rostros reales y copias estáticas. Algunos métodos típicos son aquellos basados en la detección de párpados de ojos; gestos de cabeza y rostro (cabeceo, sonreír o mirar en diferentes direcciones); seguimiento del rostro y la mirada a través de la estimación de flujo. Estas técnicas son altamente efectivas para detectar ataques que utilizan fotos, pero pierden efectividad cuando se trata de vídeos.

Con el objetivo de aumentar el desempeño en los ataques con vídeos, se han desarrollado métodos específicos de liveness detection en vídeos. Por ejemplo, explorar la estructura 3D de los vídeos, analizar una gran cantidad de imágenes 2D con diferentes posiciones de la cabeza; usar un análisis basado en contexto para tomar ventaja de la información no-facial disponible en las muestras, como características de movimientos en la escena (como por ejemplo, movimiento en el fondo v/s primer plano). También se están usando versiones modificadas de Local Binary Patterns o LBP, para aprovechar la información temporal presente en el vídeo o analizar las texturas dinámicas en comparación con objetos rígidos como fotos y máscaras.

En búsqueda de soluciones

Una forma de enfrentar el problema es enfocarse en la detección de vida. Para esto, es necesario considerar una representación espacio-temporal que combine el aspecto facial y su dinámica. Para lograrlo, la clave está en la utilización de una representación espacio-temporal basada en LBP debido al desempeño mostrado en el modelamiento de movimiento de rostros y reconocimiento de expresiones faciales, y también en el reconocimiento de textura dinámica.

¿Cómo se detecta la suplantación en sistemas de reconocimiento facial?

El operador LBP para análisis de textura es definido como una medida de escala de grises invariante a la textura, derivado de una definición general en una vecindad local. Este es un descriptor de textura poderoso, y entre sus propiedades para aplicaciones del mundo real se destaca su poder discriminativo, simplicidad computacional y tolerancia ante cambios monotónicos en escala de grises.

El operador LBP inicialmente fue concebido para lidiar con información espacial. Sin embargo, su uso se ha ampliado a representaciones espacio temporal para análisis de textura dinámica, dando paso al operador Volume Local Binary Pattern (VLBP). 

VLBP consiste en encontrar la textura dinámica en un vídeo, el cual es representado como un volumen (X, Y, T), donde X y Y denotan las coordenadas espaciales y T representa el índice del frame. Por otro lado, la vecindad de cada píxel está definida en un entorno tridimensional. El volumen de VLBP puede ser definido por planos ortogonales, dando paso a lo que se conoce como LBP-TOP o LBP Three Orthogonal Planes. Aquí se definen los planos XY, XT y YT. A partir de ellos, se extraen los mapas LBP para cada plano, denotados como XY-LBP, XT-LBP y YT-LBP y luego se concatenan para obtener la representación LBP considerando como centro un píxel del volumen , como se muestra en la figura.

LBP en tres planos ortogonales. (a) Los planos intersectan un píxel. (b) Histogramas LBP de cada plano. (c) Concatenación de los histogramas.

En el operador LBP-TOP el radio del algoritmo LBP en el eje X es denotado Rx, en el eje Y es denotado Ry y en el eje T es denotado por Rt.

El número de puntos vecinos en los planos XY ,XT y YT es PXY, PXT y PYT, respectivamente. El tipo de operador en cada plano puede variar, estos pueden ser, patrones uniformes(u2), patrones uniformes invariantes a la rotación (rui2).

A diferencia de las fotografías, los rostros reales son objetos no rígidos con contracciones de los músculos faciales que resultan en deformaciones temporales. Por ejemplo, párpados y labios. Por lo tanto, se asume que los patrones específicos de movimiento facial deberían ser detectados cuando un humano vivo es observado con una cámara frontalmente. El movimiento de una fotografía frente a una cámara causa patrones de movimiento distintivos que no describen el mismo patrón que una cara genuina.

En la figura se presenta la metodología anti-spoofing, la cuál consta de los siguientes etapas:

Diagrama de bloques de método anti-spoofing basado en LBPTOP.

Diagrama de bloques de método anti-spoofing basado en LBPTOP.

  1. Cada frame de la secuencia original es convertido a escala de grises y pasado a través de un detector de rostros.
  2. Los rostros detectados son geométricamente normalizados a 64 × 64 píxeles. Esto, con el objetivo de reducir el ruido del detector de rostros, la misma bounding box es utilizada para cada set de frames usado en el cálculo con el operador LBP-TOP. 
  3. El operador LBP es aplicado en cada plano (XY,XT y YT) y los histogramas son calculados y luego concatenados.
  4. Se utiliza un clasificador binario para determinar cuáles son datos reales.

Cada uno de los vídeos, ya sea de ataques o accesos reales, es transformado a un arreglo 3D y en escala de grises que representa la distribución espacial X, Y, T. Luego, son divididos en secuencias de 75 frames a las que se aplica un algoritmo de detección de rostros en el frame central.

Este método es útil para prevenir ataques simples en sistemas de reconocimiento facial (como es el caso de las fotografías), pero no recomendable para ataques más complejos. El objetivo del método es identificar variaciones temporales, que pueden ser vulneradas fácilmente con una máscara. Es por ello que se sugiere siempre combinar métodos para construir un sistema biométrico robusto.

Para mayor información y el código del proyecto desarrollado visitar el proyecto en GitHub.

 

 

Cristóbal QuezadaCristóbal Quezada

I am a Data Scientist interested in natural language processing.